$$ \begin{aligned} 1+\ln \left(\frac{b}{x}\right) &=2 \ln (a) \quad |-1 \\ \ln \left(\frac{b}{x}\right) &=2 \ln (a)-1 \\ \ln \left(\frac{b}{x}\right) &=\ln \left(a^{2}\right)-\left.1 \quad\right|_{e} \text { hoch } \\ \frac{b}{x} &=e^{\ln \left(a^{2}\right)-1} \\ \frac{b}{x} &=e^{\ln \left(a^{2}\right)}\cdot e^{-1} \\ \frac{b}{x}&=\frac{a^2}{e}\\b\cdot e&=x\cdot a^2\\{x=\frac{b\cdot e}{a^2}}\\ (x≠0,\space a>0) \end{aligned} $$