$$ arcsin(x^2)+arccos(x^2)/(-π)=0|arccos(x^2)=\pi/2-arcsin(x^2)\\arcsin(x^2)+(\pi/2-arcsin(x^2))/(-π)=0\\arcsin(x^2)*(\frac{1}{\pi}+1)=1/2\\arcsin(x^2)=\frac{1}{2*(\frac{1}{\pi}+1)}\\arcsin(x^2)=\frac{\pi}{2*(1+\pi)}\\x^2=sin(\frac{\pi}{2*(1+\pi)})\\x=\pm\sqrt{ sin(\frac{\pi}{2*(1+\pi)})}\\ $$