berechne erstmal die Ableitungen in den neuen Variablen (mithilfe der Kettenregel):
$$ \frac{d\Theta(\vartheta)}{d\vartheta}\\=\frac{d\Theta(\vartheta(x))}{dx}\frac{dx}{d\vartheta}\\=-sin(\vartheta)\frac{d\Theta(\vartheta(x))}{dx}=-sin(\vartheta)\frac{d\Theta(x)}{dx}\\\frac{d^2\Theta(\vartheta)}{d\vartheta^2}\\=\frac{d}{d\vartheta}[-sin(\vartheta)\frac{d\Theta(x(\vartheta))}{dx}]\\=-cos(\vartheta)\frac{d\Theta(x(\vartheta))}{dx}-sin(\vartheta)\frac{d}{d\vartheta}\frac{d\Theta(x(\vartheta))}{dx}\\=-cos(\vartheta)\frac{d\Theta(x(\vartheta))}{dx}-sin(\vartheta)\frac{dx}{d\vartheta}\frac{d}{dx}\frac{d\Theta(x(\vartheta))}{dx}\\=-cos(\vartheta)\frac{d\Theta(x)}{dx}+sin^2(\vartheta)\frac{d^2\Theta(x)}{dx^2}\\=-x\frac{d\Theta(x)}{dx}+(1-x^2)\frac{d^2\Theta(x)}{dx^2}\\ $$
Damit ergibt sich
$$ \frac{d^2\Theta(\vartheta)}{d\vartheta^2}+\frac{cos(\vartheta)}{sin(\vartheta)}\frac{d\Theta(\vartheta)}{d\vartheta}\\ =-x\frac{d\Theta(x)}{dx}+(1-x^2)\frac{d^2\Theta(x)}{dx^2}-x\frac{d\Theta(x)}{dx}\\ =(1-x^2)\frac{d^2\Theta(x)}{dx^2}-2x\frac{d\Theta(x)}{dx} $$