Jede der Beobachtungen beschreibt eine Gerade in der Ebene. Jeweils ausgehend vom Standpunkt des Beobachters und mit der beobachteten Richtung. Wenn man jede dieser Geraden \(i \in [1 \dots 5]\) in der Hesseschen Normalform schreibt, so erhält man
$$n_i^Tx_i - d_i = 0 \quad \text{mit } |n_i|=1$$
Diese Form hat den Vorteil. dass man ausgehend von einer Position \(v\) (V wie Vogel) sofort den Abstand \(e\) des Vogels zu dieser Geraden bestimmen kann. Es ist
$$e = |n_i^Tv - d_i|$$
Das übliche Vorgehen besteht nun darin, die Summe \(S\) der Quadrate aller Abstände \(e\) zu minimieren. Diese Summe ist
$$S = \sum e^2 = \sum_i |n_i^Tv - d_i|^2 = \sum_i (n_i^Tv - d_i)^2 \space \to \min$$ Dazu leitet man nach den Koordinaten von \(v\) ab und setzt das Resultat zu 0.
$$\frac{\partial S}{\partial v} = \sum_i 2 n_i(n_i^Tv - d_i) = 0$$ Daraus folgt $$\left( \sum_i n_i \cdot n_i^T \right) \cdot v = \sum_i n_i \cdot d_i$$ und das ist nichts anderes wie ein lineares Gleichungssystem mit der Unbekannten \(v\). Der Ausdruck \(n_i \cdot n_i^T\) ist ein dyadisches Produkt zweier Vektoren und daher eine Matrix.
Der erste Beobachter Nora hat die Position \(p_1=(8; 0)^T\) und schaut in Richtung \(45°\) folglich ist der Normalenvektor
$$n_1=\frac{1}{\sqrt{2}}\begin{pmatrix} -1\\ 1\end{pmatrix}$$
und das \(d_1\) ist
$$d_1 = n_1^T \cdot p_1= \frac{1}{\sqrt{2}}\begin{pmatrix} -1\\ 1\end{pmatrix}^T \cdot \begin{pmatrix} 8\\ 0\end{pmatrix}= \frac{-8}{\sqrt{2}} $$ das dyadische Produkt der Normalvektoren und die rechte Seite für den ersten Beobachter Nora sind dann
$$n_1 \cdot n_1^T = \frac12 \begin{pmatrix} 1 & -1\\ -1 & 1\end{pmatrix} = \begin{pmatrix} 0,5 & -0,5\\ -0,5 & 0,5\end{pmatrix}$$ $$n_1 \cdot d_1 = \frac12 \begin{pmatrix} 8\\ -8\end{pmatrix} = \begin{pmatrix} 4\\ -4\end{pmatrix}$$ Das ist jetzt für jeden der fünf Beobachter zu machen und anschließend sind alle Matrizen und Vektoren der rechten Seite zu addieren. Man erhält:
$$\begin{pmatrix} 1,4 & 0 \\ 0 & 3,6\end{pmatrix} \cdot v = \begin{pmatrix} 26,2\\ 35,4\end{pmatrix}$$ was leicht zu lösen ist, da die Nebendiagonale der Matrix =0 ist.
$$v = \begin{pmatrix} \frac{262}{14}\\ \frac{354}{36}\end{pmatrix} = \begin{pmatrix} 18\frac{5}{7}\\ 9\frac{5}{6}\end{pmatrix}$$
Grafisch sieht das ganze so aus wie oben. Der grüne Punkt zeigt die wahrscheinliche Position des Vogels. Sieht sinnvoll aus ...
Gruß Werner