ich habe das gleiche aber auf englisch gefunden. Ich hoffe, dass es dir hilft:
FRAGE:
Prove that GCD(a, m) = 1 if and only if ¯a ∈ Zm is a unit. GCD(a, m) = 1 if and only if ax + my = 1 for some x, y ∈ Z if
and only if ax ≡ 1 (mod m) if and only if a¯ ∈ Zm is a unit.
(b) Prove that if ¯a ∈ Zm is a zero-divisor, then GCD(a, m) > 1,
and conversely.
ANTWORT:
If a¯ is a zero divisor, then ab ≡ 0 (mod m) for some b with m - b. Hence, m|ab. Since m - b, that means that some prime factor
p of m must divide a. Hence, GCD(a, m) > 1. Conversely, suppose GCD(a, m) > 1. Let p be a prime dividing both a and m, and let b = m/p. Then ab = am/p = (a/p)m ≡ 0 (mod m). Hence a is a zero divisor.