+2 Daumen
1k Aufrufe

könnte mir jemand erklärend vorrechnen, wie man den Rand bestimmt. Und bei b), c) das Doppel-Integral mit den Grenzen aufschreiben, welches ich berechnen muss.

Sei R>0, Q∶=[−R,R]×[−R,R]⊂ℝ2 und D={(x,y)∈Q|x2+y2≤R2} die Kreisscheibe mit Radius R.

Screenshot_20181212-081702_Drive.jpg

Avatar von

Brauche immernoch Hilfe.

Der Rand von Q ist {(x,y): x^2+y^2=1}

Was bedeutet bei euch 1|_D (x,y)? Soll das der Rand sein?

Ich vermute eher so was wie Dirac (?). D.h. Innerhalb von Q (inkl. Rand) ist der Funktionswert 1, daneben 0.


Grund für Kommentar: Neue Frage zu Jordan und Messbarkeit, die anscheined erledigt ist. https://www.mathelounge.de/645075/ist-die-ellipsenflache-messbar-in-der-ebene

Hellin behandelte kurz dieser Frage Ober- und Untersummen. Vgl. https://www.mathelounge.de/590748/ober-untersumme-berechnen

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community