Aufgabe:
Warum ist das Kreuzprodukt von (-4,-2,4) und (4,0,-2) nicht (4,-8,8), sondern (4,8,8)?
Warum ist der zweite Parameter negativ? Man rechnet doch 8-16, was -8 ist? Was mache ich falsch?
Hi,
ich hab da 16-8 und nicht 8-16. Du scheinst den ersten und den letzten Eintrag andersrum rangenommen zu haben?
Grüße
Danke für die Rückmeldung!
Warum rechnet man zuerst von links nach rechts und dann von rechts nach links?
Wie meinst Du das?
https://de.wikipedia.org/wiki/Kreuzprodukt#Komponentenweise_Berechnung
Hier gibt es direkt eine Formel.Wenn man die Formel nicht kennt, kann man auch zweimal die Vektoren übereinander schreiben. Die erste und letzte Zeile wird weggestrichen und schon kann man die Kreuzprodukte durch Kreuze kenntlich machen^^.
-2*(-2) - 4*0 = 4
4*4 - (-4)*(-2) = 16-8 = 8
-4*0 - (-2)*4 = 8
;)
Vielen Dank! Ich habe es verstanden!! :)
Freut mich. Gerne :)
\( \begin{pmatrix} -4\\-2\\4\end{pmatrix} \) x \( \begin{pmatrix} 4\\0\\-2\end{pmatrix} \) = \( \begin{pmatrix} (-2 * -2) - (4 * 0)\\( 4* 4) - ( -4 * -2)\\(-4 * 0) - ( -2 * 4) \end{pmatrix} \) = \( \begin{pmatrix} 4\\8\\8 \end{pmatrix} \)
Vielen Dank für die Antwort!
Warum rechnest Du: (4*4)-(-4*-2) und nicht andersrum also (-4*-2)-(4*4)?
Danke für die Hilfe!
Man definierte das Kreuzprodukt so, dass ein Vektor herauskommt, der senkrecht auf den beiden gegebenen Vektoren steht und noch ein paar andere Eigenschaften hat.
D.h. man interessiert sich für einen Vektor, dessen Skalarprodukt mit beiden gegebenen Vektoren jeweils 0 gbit.
Das ist bei (4,-8,8) nicht gegeben.
https://de.wikipedia.org/wiki/Kreuzprodukt#Geometrische_Definition
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos