A(n+1)= A(n)+(n+1)^2
$$\sum \limits_{k=0}^{n+1}k^2=\sum \limits_{k=0}^{n}k^2+(n+1)^2$$
$$=\frac{1}{6}n(n+1)(2n+1)+(n+1)^2$$
$$=(n+1)[\frac{1}{6}n(2n+1)+(n+1)]$$
$$=(n+1)[\frac{1}{6}(n(2n+1)+6n+6))]$$
$$=(n+1)[\frac{1}{6}(2n^2+7n+6)]$$
$$=(n+1)[\frac{1}{6}(2n+3)(n+2)]$$
$$=\frac{1}{6}(n+1)(n+2)(2n+3)$$