Das Vektor- bzw. Kreuzprodukt hat zwei wesentliche Merkmale
1. Das Ergebnis des Kreuzproduktes ist ein Vektor der zu den beiden multiplizierten Vektoren senkrecht steht. Das könnte man verwenden, wenn Dinge senkrecht abgestützt werden sollen.
Z.B. die Mitte der Dachfläche soll von einem Stützbalken getragen werden, der senkrecht zur Dachfläche verläuft. Wo müsste dieser Balken im Dachboden verankert sein?
Z.B. das aus dem Dach herausragende Schornsteinrohr soll in seiner Mitte mit einer Eisenstange, die senkrecht auf dem Dach endet, abgestützt werden. Wo wird die Eisenstange auf dem Dach befestigt werden.
2. Der Betrag des Kreuzproduktes ist gleich dem Flächeninhalt des von den Vektoren aufgespannten Parallelograms. Das kann man leicht verwenden um Flächen oder auch Volumen zu berechnen.
Z.B. Könntest du die Dachflächenberechnung komplett sehr einfach über das Kreuzprodukt erledigen.