0 Daumen
316 Aufrufe


Sei V ein n-dimensionaler K-Vektorraum und f: V → V eine lineare Abbildung deren charakteristisches Polynom in Linearfaktoren zerfällt.

Man zeige:

                   span({f^m |m∈ℕ0})⊆End(V)

ist ein höchstens n-dimensionaler Untervektorraum.

Ich habe leider keinen Ansatz dafür. Muss ich auch außerdem auch zeigen, dass span.. ein UVR von End(V) ist?

Als tipp wurde uns noch der Satz von Hamilton-Cayley gegeben.

Ich wäre für jede Hilfe dankbar

Gruß Ereboss

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community