Aloha :)
zu a) Die Wahrscheinlichkeit, dass mindestens einer von beiden trifft, ist das Gegenereignis dazu, dass keiner der beiden trifft, daher gilt:$$P(\ge1\text{ trifft})=1-0,5\cdot0,6=0,7$$zu b) Die Wahrscheinlichkeit, dass genau einer von beiden trifft, bedeutet, dass A trifft und B nicht, oder B trifft und A nicht:$$P(=1\text{ trifft})=0,4\cdot0,5+0,5\cdot0,6=(0,4+0,6)\cdot0,5=0,5$$