Aloha :)
$$-1+(-2i)^{0,5}=-1+2^{0,5}\cdot\left(-i\right)^{0,5}=-1+\sqrt2\cdot\left(\underbrace{\cos(\pi/2)}_{=0}-i\cdot\underbrace{\sin(\pi/2)}_{=1}\right)^{0,5}$$$$=-1+\sqrt2\cdot\left(e^{-i\pi/2}\right)^{0,5}=-1+\sqrt2\cdot\left(e^{-i\pi/4}\right)$$$$=-1+\sqrt2\cdot\left(\cos(\pi/4)-i\cdot\sin(\pi/4)\right)$$$$=-1+\sqrt2\cdot\left(\frac{1}{\sqrt2}-\frac{i}{\sqrt2}\right)=-1+1-i=-i$$