Wenn
\(\underbrace{1+_{K}1+_{K}\dots+_{K}1}_{n\text{ Summanden}}=\underbrace{1+_{K'}1+_{K'}\dots+_{K'}1}_{n\text{ Summanden}}\)
für jedes n ∈ℕ ist, dann ist insbesondere auc
\(\underbrace{1+_{K}1+_{K}\dots+_{K}1}_{n\text{ Summanden}}=0 \iff\underbrace{1+_{K'}1+_{K'}\dots+_{K'}1}_{n\text{ Summanden}}=0\)
für jedes n ∈ℕ.
Dann ist char(K) = char(K').
Das \(\underbrace{1+_{K}1+_{K}\dots+_{K}1}_{n\text{ Summanden}}=\underbrace{1+_{K'}1+_{K'}\dots+_{K'}1}_{n\text{ Summanden}}\) für jedes n ∈ℕ ist, kann man mit vollständiger Induktion zeigen.