Aufgabe:
Ich hänge an folgender Aufgabe.
Eine Gruppe G heißt metazyklisch, wenn ein zyklischer Normalteiler N existiert, so dass G/N zyklisch ist.
Zeigen Sie S3 ist metazyklisch.
Mein erstes Problem ist S3. Das ist ja die Symmetrische Gruppe mit den Elementen {1,2,3}, wobei es eben mehrere Permutationen gibt das heißt doch es gibt kein eindeutige Struktur der S3?
Problem/Ansatz:
Vom Vorgehen der Aufgabe müsste ich ja zeigen, dass S3 einen Normalteiler hat, der zyklisch ist. Ich weiß, dass jeder Untergruppe einer zyklische Gruppen selbst zyklisch ist. Da N ebenfalls eine UG ist, wäre N zyklisch genau dann wenn S3 zyklisch ist. D.h ich zeige das S3 zyklisch ist. Im nächsten Schritt muss ich zeigen, dass S3N zyklisch ist. Da habe ich auch wieder verständnissschwierigkeiten.