$$f(x)=y= (x-3)^2 \quad; \qquad y= x^2-6x+9 \quad;\qquad y'= 2x - 6=2\cdot(x-3) $$
Tangente \(t(x)=m_T\cdot x\)
Im Berührpunkt \((x_0|y_0)\) gilt:
$$ f(x_0)=t(x_0)\quad; \quad f'(x_0)=t'(x_0)=m_T $$
$$f(x_0)=(x_0-3)^2=2\cdot(x_0-3)\cdot x_0$$
$$ x_{01}=3 \quad;\quad x_{02}-3=2x_{02}\Rightarrow x_{02}=-3$$
$$ x_{01}=3 \quad;\quad f'(x_{01})=2\cdot(3-3)=0 \quad;\quad t_1(x)=0 ~~~y-\text{Achse}$$
$$ x_{02}=-3 \quad;\quad f'(x_{02})=2\cdot(-3-3)=-12 \quad;\quad t_2(x)=-12x$$