+1 Daumen
1,3k Aufrufe
6.12. Nikolaus! Der Weihnachtmann und Engel Gabriel haben beschlossen, den Nikolaus
mit einem Geschenk zu überraschen, wenn er von seiner anstrengenden Tour am Abend wieder
zurück ist. Letzten Sonntag waren sie wieder einmal inkognito auf einem Weihnachtsbasar
unterwegs und haben Mini-Lebkuchen entdeckt. Es gab Lebkuchen ohne Überzug, Lebkuchen mit
Mandeln und Zuckerguss und mit Schokoladenüberzug. Sie kosteten 12, 14 und 17 Cent pro Stück.

Da sie von der Vorliebe des Nikolaus für Lebkuchen wussten kaufte Engel Gabriel eine
Mischung aus allen drei Sorten für den Nikolaus für 2 Euro, die er zufällig noch in der
Tasche hatte. (... wie verwunderlich, Engel haben doch sonst mit Geld nichts am Heiligenschein ...)

Es herrschte Andrang am Stand und als Engel Gabriel sich wieder zum Weihnachtsmann
durchgeschlagen hatte, fragte der Weihnachtsmann, wie viele Lebkuchen Engel Gabriel für
2 Euro bekommen habe. Dieser nannte ihm die Gesamtzahl. Der Weihnachtsmann überlegte kurz
und sagte daraufhin zum Engel Gabriel, dass er nicht herausfindenden könne, wie viele
Lebkuchen er von jeder Sorte gekauft habe. Er fragte den Engel daraufhin, ob er von einer
Sorte nur einen gekauft habe. Der Engel antwortete ihm mit “Ja” oder mit “Nein”. (Der
Weihnachtsmann hörte die Antwort - wir leider nicht). Jetzt wusste der Weihnachtsmann,
wie viele der Engel Gabriel von jeder Sorte gekauft hatte. Du auch?

Multipliziere die Anzahl der Lebkuchen ohne Überzug mit 2, die Anzahl der Lebkuchen
mit Mandeln und Zuckerguss mit 3, die Anzahl der Lebkuchen mit Schokoladenüberzug mit 4
und addiere die Produkte. Die Lösungszahl ist dann

Antworten:
1.) 41
2.) 42
3.) 43
4.) 44
Avatar von

1 Antwort

+1 Daumen

Es gibt die Lösungen

o = 1, s = 2, z = 11, g = 14
o = 3, s = 8, z = 2, g = 13
o = 4, s = 4, z = 6, g = 14
o = 7, s = 6, z = 1, g = 14
o = 8, s = 2, z = 5, g = 15

Es wurde eine Gesamtzahl von 14 genannt, den nur so gibt es mehrere Lösungen

o = 1, s = 2, z = 11, g = 14
o = 4, s = 4, z = 6, g = 14
o = 7, s = 6, z = 1, g = 14

Der Weihnachtsman hörte das nicht nur einer von einer Sorte gekauf wurde und wusste damit

o = 4, s = 4, z = 6, g = 14

Das es 4 ohne Überzug, 4 mit Schokolade und 6 mit Mandeln und Zuckerguss sein müssen.

Multipliziere die Anzahl der Lebkuchen ohne Überzug mit 2, die Anzahl der Lebkuchen
mit Mandeln und Zuckerguss mit 3, die Anzahl der Lebkuchen mit Schokoladenüberzug mit 4
und addiere die Produkte. Die Lösungszahl ist dann

4*2 + 6*3 + 4*4 = 42

Avatar von 488 k 🚀

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

+3 Daumen
3 Antworten
0 Daumen
0 Antworten
0 Daumen
0 Antworten
Gefragt 26 Aug 2023 von Gast

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community