a) 2x=3y+6 (-1;-3);
Du setzt für x -1 und für y -3 ein:
$$2\cdot(-1)=3\cdot(-3)+6\\-2=-3$$
Der Punkt liegt also nicht auf der Geraden
Bei den anderen Aufgaben gehst du ebenso vor.
2) Gib jeweils fünf Zahlenpaare an, die Lösungen der Gleichung sind!
a) 12x+2y=0
$$12x+2y=0\\y=-12x $$
Entweder zeichnest du die Gerade ein und liest Zahlenpaare ab, oder du gibst für x beliebige Zahlen ein und berechnest y.
3) Forme die Gleichungen nach den Variablen x oder y um! Wähle dabei die
günstige Variante! Gib anschliessend drei Zahlenpaare an, die zur Lösungsmenge der Gleichung gehören!
a) X+y=16
b) 5x-2,5y=120
Das solltest du alleine schaffen.
4) Stelle die Gleichungen nach der Variable y um und zeichne den zugehorigen Graphen!
a) Y=2x-1
b) Y=-x-2,5
Umgestellt sind die Gleichungen schon, zum Zeichnen würde ich so vorgehen.
y = mx + b
Schnittpunkt mit der y-Achse markieren, den du aus der Gleichung ablesen kannst. Anschließend eine Einheit nach rechts und dann m Einheiten nach oben, wenn m > 0 bzw. m Einheiten nach unten, wenn m < 0. Dann die beiden Punkte miteinander verbinden.