Aufgabe 1
Der Körper der von den drei Vektoren aufgespannt wird, ist streng genommen kein Tetraeder, sondern eine schiefe Pyramide mit dreieckiger Grundfläche. (Tetraeder werden aus vier gleichseitigen Dreiecken gebildet.)
Das Volumen der Pyramide berechnest du mit \(V=\frac{1}{3}\cdot G\cdot h\). Dabei ist \(G\) die Grundfläche und \(h\) die Höhe der Pyramide.
Der Betrag des Kreuzprodukts \(\vec a\times \vec b\) ist gleich dem Flächeninhalt des von beiden Vektoren aufgespannten Parallelogramms. Die Grundfläche der Pyramide ist aber nur die halbe Parallelogrammfläche, also \(G=\frac{1}{2}\cdot|\vec a\times \vec b|\).
Für die Höhe gilt \(h= |\vec a\times \vec b|\), da \(\vec a\times \vec b\) orthogonal zur Grundfläche steht.
Insgesamt ergibt sich \(V=\frac{1}{3}\cdot G\cdot h=\frac{1}{3}\cdot\frac{1}{2}\cdot|\vec a\times \vec b|\cdot |\vec a\times \vec b|\).
$$ V=\frac{1}{6}\cdot |\vec a\times \vec b|^2 $$
Aufgabe 3
Geben sie eine zu g(t) orthogonale Gerade g_s(t) an die durch den Punkt (2,1,0) verläuft.
g(t) = (2,1-1) + t (-2,1,2).
Die gesuchte Gerade \(g_s\) muss in der Ebene E liegen, die durch den Punkt P(2|1|0) und die Gerade g gegeben ist.
$$ g:~~~\vec x=\begin{pmatrix}2\\1\\-1 \end{pmatrix}+t\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix} $$
Da ein Punkt von \(g_s\) gegeben ist, muss nur der Richtungsvektor \(\vec u\) bestimmt werden, der orthogonal zum Richtungsvektor von \(g\) verläuft. $$ \begin{pmatrix}2\\1\\0 \end{pmatrix}=\begin{pmatrix}2\\1\\-1\end{pmatrix}+t\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix}+\vec u~~~~~;~~~~~\begin{pmatrix}-2\\1\\2 \end{pmatrix}\cdot\vec u=0 $$ $$ \begin{pmatrix}0\\0\\1\end{pmatrix}=t\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix}+\vec u $$ Jetzt multiplizieren wir die Gleichung mit \(\begin{pmatrix}-2\\1\\2\end{pmatrix}\):$$ \begin{pmatrix}0\\0\\1 \end{pmatrix}\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix}=t\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix}\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix}+\vec u\cdot \begin{pmatrix}-2\\1\\2 \end{pmatrix} $$ $$ \begin{pmatrix}0\\0\\1 \end{pmatrix}\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix}=t\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix}\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix} $$ $$ 2=9t \Rightarrow t=\frac{2}{9} $$ Das setzen wir in die oben stehende Gleichung ein:$$ \begin{pmatrix}0\\0\\1 \end{pmatrix}=t\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix}+\vec u $$$$ \vec u = \begin{pmatrix}0\\0\\1 \end{pmatrix}-t\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix} $$ $$ \vec u = \begin{pmatrix}0\\0\\1 \end{pmatrix}-\frac{2}{9}\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix} $$
Da Richtungsvektoren verlängert werden dürfen, multipliziere ich mit 9 um Brüche zu vermeiden. $$ 9\vec u = \begin{pmatrix}0\\0\\9\end{pmatrix}-2\cdot\begin{pmatrix}-2\\1\\2 \end{pmatrix} $$ $$ 9\vec u = \begin{pmatrix} 4\\-2\\5 \end{pmatrix} $$ $$ \boxed{g_s:~~~\vec x=\begin{pmatrix}2\\1\\0 \end{pmatrix}+s\cdot\begin{pmatrix}4\\-2\\5 \end{pmatrix}} $$