Wir wählen im \( \mathbb{R}^{3} \) die Grundrissebene \( \pi^{\prime}=\left\{(x, y, z) \in \mathbb{R}^{3} | z=0\right\} \) und die Aufrisseben \( \pi^{\prime \prime}=\left\{(x, y, z) \in \mathbb{R}^{3} | x=0\right\} . \) Die Ebene \( E_{1} \) sei gegeben durch die beiden Schnittgeraden \( s \)
und \( s^{\prime \prime} \) mit Grund- und Aufrissebene wie in Aufgabe \( 1 . \) Betrachte außerdem die Ebene \( E_{2} \) gegeben durch die drei Punkte
$$ A=(1,1,1), \quad B=(3,0,3), \quad C=(3,3,1) $$
(a) Bestimmen Sie die Schnittgeraden \( t^{\prime} \) und \( t^{\prime \prime} \) der Ebene \( E_{2} \) mit der Grund- und Aufris sebene.
(b) Bestimmen Sie die Schnittgerade \( E_{1} \cap E_{2} \)
Ich weiß nicht, ob die Punkte A, B, C ein Dreick bilden sollen.