Aloha :)
Eine quadratische Funktion hat die Form:$$E(x)=ax^2+bx+c$$Wir setzen die 4 Punkte ein:
$$\begin{array}{r}672 &=& 36a^2 &+& 6b &+& c\\686 &=& 49a^2 &+& 7b &+& c\\672 &=& 64a^2 &+& 8b &+& c\\560 &=& 100a^2 &+& 10b &+& c\end{array}$$Wir haben 4 Gleichungen und 3 Unbekannte, also eine Gleichung zu viel. Wir wählen daher die ersten 3 Gleichungen zur Berechnung der Unbekannten aus und prüfen anschließend, ob auch die vierte Gleichung erfüllt wird.
$$\begin{array}{r}a & b & c & = & \text{Operation}\\\hline36 & 6 & 1 & 672 & \\49 & 7 & 1 & 686 &-\text{Zeile } 1\\64 & 8 & 1 & 672 & -\text{Zeile }2\\\hline36 & 6 & 1 & 672 & -6\cdot\text{Zeile }2\\13 & 1 & 0 & 14 & -\text{Zeile }3\\15 & 1 & 0 & -14 & \\\hline -42 & 0 & 1 & 588 & \\-2 & 0 & 0 & 28 & :(-2) \\15 & 1 & 0 & -14 & \\15 & 1 & 0 & -14 & \\\hline -42 & 0 & 1 & 588 & +42\cdot\text{Zeile }2 \\1 & 0 & 0 & -14 & \\15 & 1 & 0 & -14 & -15\cdot\text{Zeile }2\\\hline 0 & 0 & 1 & 0 & \\1 & 0 & 0 & -14 & \\0 & 1 & 0 & 196 &\end{array}$$Wir haben also folgende Funktion gefunden:$$E(x)=-14x^2+196x$$Auch die vierte Bedinung wird von dieser Funktion erfüllt.
~plot~ -14x^2+196x; {6|672} ; {7|686} ; {8|672} ; {10|560} ; [[0|16|0|700]] ~plot~