Aloha :)
$$E(X)=\int\limits_{-\infty}^\infty x\cdot f(x)\,dx=\int\limits_{647}^{648} x\cdot 0,34\,dx+\int\limits_{648}^{649} x\cdot 0,1\,dx+\int\limits_{649}^{650} x\cdot 0,56\,dx$$$$\phantom{E(X)}=0,34\,\left[\frac{x^2}{2}\right]_{647}^{648}+0,1\,\left[\frac{x^2}{2}\right]_{648}^{649}+0,56\,\left[\frac{x^2}{2}\right]_{649}^{650}$$$$\phantom{E(X)}=0,17\left(648^2-647^2\right)+0,05\left(649^2-648^2\right)+0,28\left(650^2-649^2\right)$$$$\phantom{E(X)}=\boxed{648,72}$$