0 Daumen
208 Aufrufe

Aufgabe:

Lösen Sie die Differentialgleichung mit Laplace-Transformationen

2x̄ + 7ẋ + 3x = F(t) , x(0)=0, ẋ(0)=0


(a) Finden Sie die Übertragungsfunktion des Systems
(b) Finden Sie die Systemantwort in der Zeit x (t), falls F (t) eine Konstante ist, d. h. F (t) = 1.
Problem

Avatar von

1 Antwort

0 Daumen

Hallo,

a)

x=F(s)

x'= -x(0) +s F(s)

x''=-s x(0)-x'(0)+s^2 F(s)

---->

2 s^2 F(s) +7s F(s) +3 F(s)= LT{F(t)}

        F(s) (2 s^2 +7s +3)= LT{F(t)}

        F(s)= LT{F(t)} /(2 s^2 +7s +3)

b)

F(s)=1 /(2 s^2 +7s +3) *1/s

F(s) = 1/( s (2s+1)(s+3))

Ansatz Partialbruchzerlegung:

F(s)=1/( s (2s+1)(s+3))=A/s +B/(s+3) +C/(2s+1)

F(s)= 1/(3s) +1/(25(s+3)) -4/(5(2s+1))

\( x(t)=-\frac{2}{5} e^{-t / 2}+\frac{e^{-3 t}}{15}+\frac{1}{3} \)

Avatar von 121 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community