Nullstellen
$$f(x)= cos (x) + sin (2x)$$$$f(x)=cos (x) +2 sin (x) cos (x)$$$$f(x)=cos (x)* ( 1+ 2 sin (x))=0$$$$ cos (x)=0→x_i=(0,5+ i)π$$oder$$sin(x) =-0,5→x_j=(2j-1/6)π$$$$sin(x) =-0,5→x_k=(2k-5/6)π$$
Extremwerte
$$f'(x)= 2 cos (2x) - sin (x)$$$$f'(x)= 2( cos^2 (x) - sin^2 (x))- sin (x)$$$$f'(x)= 2( 1 - 2sin^2 (x))- sin (x)$$$$f'(x)= - 4sin^2 (x)- sin (x)+2=0$$$$ sin^2 (x)+1/4 sin (x)-1/2=0$$$$sin(x)_1=1/8+ \sqrt{\frac{33}{64}}≈0,84307$$$$x_1i≈1,003+2iπ$$$$sin(x)_2=1/8- \sqrt{\frac{33}{64}}≈-0,59307 $$$$x_2i≈2iπ-0,6348$$