0 Daumen
158 Aufrufe

Aufgabe:

Gefragt: Rechtsableitung von f am Randpunkt x0=0

Df=(0,1]

$$y=f(x)=\sqrt{\frac{1-\sqrt{x}}{1-x}}$$


Problem/Ansatz:

Ich habe Probleme das Beispiel zu lösen.

Mir kommt vor ich verstehe die Angabe nicht richtig.

Lg!

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Aloha :)

Mit Hilfe der dritten binomischen Formel faktorisieren wird zunächst den Nenner und vereinfachen$$f(x)=\sqrt{\frac{1-\sqrt x}{1-x}}=\sqrt{\frac{1-\sqrt x}{(1-\sqrt x)(1+\sqrt x)}}=\sqrt{\frac{1}{1+\sqrt x}}=\sqrt{(1+\sqrt x)^{-1}}$$$$\phantom{f(x)}=\left[(1+\sqrt x)^{-1}\right]^{1/2}=(1+\sqrt x)^{-1/2}$$

Das ist mit der Kettenregel schnell abgelitten:$$f'(x)=\underbrace{-\frac{1}{2}(1+\sqrt x)^{-3/2}}_{=\text{äußere Abl.}}\cdot\underbrace{\frac{1}{2\sqrt x}}_{=\text{innere Abl.}}=-\frac{1}{4}\frac{1}{(1+\sqrt x)\sqrt{1+\sqrt x}\cdot\sqrt x}$$$$\phantom{f'(x)}=-\frac{1}{4}\frac{1}{(\sqrt x+x)\sqrt{1+\sqrt x}}$$

Speziell für \(x\to0\) finden wir:$$f'(0)=\lim\limits_{x\to0}\left(-\frac{1}{4}\frac{1}{(\sqrt x+x)\sqrt{1+\sqrt x}}\right)=-\infty$$Bei \(x=0\) fällt die Funktion unendlich schnell ab:

~plot~ sqrt((1-sqrt(x))/(1-x)) ; [[-0,1|1|0,7|1]] ~plot~

Avatar von 152 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community