Aloha :)
Die Varianz einer Zufallsvariablen \(X\) ist definiert als der Mittelwert der quadratischen Abweichungen der Werte \(x_i\) vom Erwartungswert \(\mu\). Formal heißt das:$$V(X)=\frac{1}{n}\sum\limits_{i=1}^n\left(x_i-\mu\right)^2$$Den exakten Erwartungswert \(\mu\) der Zufallsvariablen \(X\) kann man jedoch nur bestimmen, wenn man alle \(N\) möglichen Werte der Zufallsvariablen \(X\) und deren exakten Wahrscheinlichkeiten \(p_i\) kennt:$$\mu=\sum\limits_{i=1}^Nx_i\cdot p_i$$
Bei empirischen Messungen hat man es jedoch immer mit Stichproben zu tun. Von den \(N\) möglichen Werten kennt man also nur einen Teil \(n<N\) und die Wahrscheinlichkeiten \(p_i\) für die Werte \(x_i\) sind auch nicht exakt bekannt. In diesen Fällen kann man den Erwartungswert \(\mu\) der Zufallsvariablen \(X\) durch den Mittelwert der bekannten Werte \(x_i\) annähern:$$\overline x=\frac{1}{n}\sum\limits_{i=1}^nx_i=\frac{x_1+x_2+x_3+\cdots+x_n}{n}$$
Der Mittelwert \(\overline x\) wird gegenüber dem exakten Erwartungswert \(\mu\) eine Abweichung haben. Wenn wir nun in der Formel für die Varianz \(V(X)\) den Erwartungswert \(\mu\) durch den Mittelwert \(\overline x\) als Näherung ersetzen, haben wir in jedem Summanden \((x_i-\overline x)^2\) einen zusätzlichen Fehler gegenüber den Summanden \((x_i-\mu)^2\). Es zeigt sich, dass dieser Fehler dadurch kompensiert werden kann, dass man in der Formel für die Varianz nicht durch \(n\), sondern durch \((n-1)\) dividiert:$$V(X)=\frac{1}{n-1}\sum\limits_{i=1}^n(x_i-\overline x)^2$$
Man sagt, dass durch diese Korrektur die empirische Stichprobenvarianz "erwartungstreu" wird.