Aufgabe:
Die Küstenwache hat in der Station \( \mathrm{K} \) die Notsignale eines Seglers A empfangen. Sie alarmiert ein Rettungsboot, das nur einige Seemeilen \( (\mathrm{sm}) \) entfernt in \( \mathrm{B} \) ankert. Die Vermessung durch die Küstenwache ergibt: \( \overline{\mathrm{AK}}=6,5 \mathrm{sm} ; \mathrm{BK}=7,8 \mathrm{sm} ; \angle \mathrm{BKA}=44,8^{\circ} \).
Wie viel Kilometer sind die Boote voneinander entfernt \( (1 \mathrm{sm}=1,852 \mathrm{~km}) ? \)
Hallo,
zur Kontrolle:
Kosinussatz:
a² = b² + c² – 2 b c cos(α)
hier dann b = 7,8 c= 6,5 α= 44,8 oben einsetzen und dann die Wurzel ziehen
a = 5,58sm gerundet
a= 5,58 * 1,852 = 10,335km gerundet
Was, glaubst du wohl, wird der Fragesteller "kontrollieren?
Naja, diese Frage ist immer berechtigt, die Hoffnung ist das der Fragesteller es selbst noch einmal nachrechnet .
Verwende den Kosinus-Satz um die dritte Seite im Dreieck zu berechnen.
Wie kann man das zeichnerisch ... lōsen?
Indem man es zeichnet. Solltest du gerade kein Blatt Papier in der Größe von mehreren Seemeilen zur Hand haben, dann nimm ein A4-Blatt und verwende dort 1 cm für eine Seemeile.
Wie kann man das ...rechnerisch lōsen?
Mit dem Kosinussatz.
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos