habe folgende Aufgabe erhalten:
Es sei \( K \subset \mathbb{C} \) kompakt und \( f: \mathrm{C} \backslash K \rightarrow \mathbb{C} \) holomorph. Zeigen Sie, dass das Verhalten von \( f \) für \( z \rightarrow \infty \) durch genau einen der folgenden drei Falle beschricben wird:
(a) Es gibt ein \( w_{0} \in \mathbb{C}, \) sodass \( f(z) \rightarrow w_{0} \) für \( z \rightarrow \infty \)
(b) Es gibt ein \( a \in \mathbb{C} \backslash\{0\} \) mit \( f(z) \approx a z^{m} \) für \( z \rightarrow \infty \)
(c) Zu jedem \( w \in \mathbb{C} \) gibt es \( z_{n} \rightarrow \infty \) mit \( f\left(z_{n}\right) \rightarrow w \).
Zeigen Sie weiterhin, dass ganze Funktionen \( f \) im Fall (a) konstant sind, im Fall (b) ein Polynom, und im Fall (c) transzendent (d.h. kein Polynom).
Ich denke man muss hier \( f\left(\frac{1}{2}\right) . \) betrachten. Für b) benötigen wir Laurentreihen, das weiß ich
Mir fällt hier leider mehr als das nichts ein, hat jemand Ahnung wie man hier das weiter zu lösen hat?
Vielen Dank im Voraus!