Aloha :)
$$z_8=(3+i)\,:\,\frac{1+2i}{1+i}=(3+i)\cdot\frac{1+i}{1+2i}=\frac{(3+i)(1+i)}{1+2i}=\frac{3+i+3i+i^2}{1+2i}$$$$\phantom{z_8}=\frac{3+4i-1}{1+2i}=\frac{2+4i}{1+2i}=\frac{2\cdot(1+2i)}{1+2i}=2$$Der Betrag ist gleich \(2\) und die Koordinaten des Punktes sind \((2|0)\).
$$z_9=\frac{3+i}{1+2i}\,:\,(1+i)=\frac{3+i}{1+2i}\cdot\frac{1}{1+i}=\frac{3+i}{(1+2i)(1+i)}=\frac{3+i}{1+2i+i+2i^2}$$$$\phantom{z_9}=\frac{3+i}{1+3i-2}=\frac{3+i}{3i-1}=\frac{1\cdot(3+i)}{3i-1}=\frac{(-i^2)\cdot(3+i)}{3i-1}=\frac{-i\cdot i\cdot(3+i)}{3i-1}$$$$\phantom{z_9}=\frac{-i\cdot(3i+i^2)}{3i-1}=\frac{-i\cdot(3i-1)}{3i-1}=-i$$Der Betrag ist gleich \(1\) und die Koordinaten des Punktes sind \((0|-1)\).