Aufgabe:
Sei \( \mathbb{N}:=\{1,2,3, \ldots\} \) wie in der Vorlesung die Menge der natürlichen Zahlen. Auf \( \mathbb{N} \) definieren wir für \( a, b \in \mathbb{N} \) die folgenden Relationen:
\( a R_{1} b: \Longleftrightarrow a \) teilt \( b, \) d.h. es existiert ein \( k \in \mathbb{N} \) mit \( a \cdot k=b \)
\( a R_{2} b: \Longleftrightarrow \exists c \in \mathbb{N} \) mit \( c \neq 1 \) und \( c \) teilt \( a \) und \( b \).
Geben Sie jeweils mit Begründung an, ob \( R_{1} \) bzw. \( R_{2} \) reflexiv, transitiv, antisymmetrisch und symmetrisch sind. Sind \( R_{1} \) bzw. \( R_{2} \) Ordnungsrelationen?
Problem/Ansatz:
R1 habe ich bereits auf die vier Relationen überprüft, jedoch weiss ich nicht wie ich R2 so schreiben soll, dass ich es auf die Eigenschaften überprüfen kann?
mir würde es schon reichen, wenn mir jemand bei der transitivität weiter helfen würde, da ich nicht verstehe wie ich die Relation xR2y, yR2z und xR2z umschreiben soll, so dass ich es durch rechnen mit Variablen beweisen kann