Hallo, zb kannst du das direkt über die Definitionen der Mengenoperationen beweisen. Außerdem ist eher sinnvoller, eine Grundmenge \(X\) festzulegen, sodass \(A,B\) und \(C\) Teilmengen von ihr sind. Man hat dann also beliebige Teilmengen \(A,B,C\subseteq X\).Nun zu deiner eigentlichen Aufgabe. Ich mache mal ein paar Schritte:
\(A\setminus (B\cup C)=\{x\in X:\ x\in A \land \neg (x\in (B\cup C))\}\\\qquad \qquad \quad =\{x\in X:\ x\in A \land \neg (x\in B \lor x\in C))\}=...\\\qquad \qquad \quad \ ...=\{x\in X:\ x\in (A\setminus B) \land x\in (A\setminus C )\}=(A\setminus B)\cap (A\setminus C)\)
Versuche nun mit diesem Konzept unter Ausnutzung der Regeln zu den logischen (und, oder) Verknüpfungen, passende Umformungen zu machen.