Aufgabe:
Ich verstehe leider nicht ganz den Unterschied zwischen einer Gleichung: 3x + 4y = 8 (das offensichtlich funktional gelöst werden kann mit mehreren Lösungen)
Und z.B. 3a + 4y = 8 (wo es funktional nicht mehr feststellbar ist, welcher Koeffizient x bzw. y ist)
Und z.B. 2a + 3b = 11, 3a + b = 6 (also einem Gleichungssystem)
Problem/Ansatz:
Ich habe folgendes Problem: gegeben ist die folgende Gleichung 3x + 4y = 8 (eine inhomogene Gleichung mit 2 Unbekannten). Nach Anwenden eben dieses müsste man die inhomogene Lösung finden (da wenn x und y = 0, die Lösung != 0, und daher inhomogen ist). Wenn man es funktional betrachtet, kann beim Usprung der x-Wert nur 0 sein, also muss der y Wert != 0 sein, der "Ortsvektor" ist also (0 | 2) + ..... Steigung der homogenen Lösung, diese kann man entweder Funktional ausrechnen (indem man y auf eine Seite setzt) oder für x,y eine Lösungspaar sucht, z.B. (4 | - 3), also ist die Lösungsmenge = L = {(0 | 2) + (4 | -3) * c}
<= Logisch
1. Unklarheit
Was wäre, wenn stünde 3a + 4b = 8 (ich weiß, dass ein Koeffizient gleich 0 sein muss (der "quasi" x-Koeffizient), es ist aber nicht klar, welcher, theoretisch könnte ich auch sagen die Lösung (inhomogene) wäre (8/3 | 0), also wäre die Lösungsmenge := {(8/3 | 0) + (4 | -3)*c}
Das Problem ist dann weiterführend bei z.B. I: 2a + 3b = 11, 3a + b= 6 zu betrachten, das ja dann mit verschiedenen Verfahren gelöst wird (Einsetzungs, Gleichsetzungs, Eliminationsverfahren), versucht man es nach dem Schema 1 zu lösen (finde die inhomogene Lösung) + verschiebe um die homogene Lösung, ist es quasi nicht möglich.
Kann man dieses homogene/inhomogene Lösungsschema nur anwenden, wenn die Parameter x,y sind und man dann davon ausgehen kann, dass es sich um x bzw. y Werte handelt?
Vielen Dank :)