Aloha :)
Wir unterscheiden drei Fälle zur Lösung der Gleichung$$(x^2-7x+11)^{x^2-13x+42}=1$$
1. Fall: \(1^a=1\)$$x^2-7x+11=1\implies x^2-7x+10=0\implies(x-2)(x-5)=0\implies$$$$x=2\quad;\quad x=5$$
2. Fall: \(a^0=1\text{ mit }a\ne0\)$$x^2-13x+42=0\implies(x-6)(x-7)=0\implies$$$$x=6\quad;\quad x=7$$Wir müssen noch prüfen, ob für diese Lösungen \((x^2-7x+11)\ne0\) ist, weil \(0^0\) nicht definiert ist.$$(6^2-7\cdot6+11)=5\ne0\quad\checkmark\quad;\quad(7^2-7\cdot7+11)=11\ne0\quad\checkmark$$
3. Fall: \((-1)^{2n}=1\text{ mit }n\in\mathbb Z:\)
$$x^2-7x+11=-1\implies x^2-7x+12=0\implies (x-4)(x-3)=0\implies$$$$x=3\quad;\quad x=4$$Wir prüfen noch, ob das Exponential-Polynom für \(x=3\) und \(x=4\) eine gerade Zahl ist:$$(3^2-13\cdot3+42)=12\quad\checkmark\quad;\quad(4^2-13\cdot4+42)=6\quad\checkmark$$
Zusammengefasst haben wir also sechs Lösungen gefunden:$$\mathbb L=\{2,3,4,5,6,7\}$$