Aloha :)
Gegeben ist uns die Funktion$$F(\vec x;t)\coloneqq t^{-\frac{n}{2}}\cdot\exp\left(-\frac{\vec x^2}{4t}\right)= t^{-\frac{n}{2}}\cdot\exp\left(-\frac{x^2}{4t}\right)=F(x;t)$$Zur Bestimmung des Laplace-Operators benötigen wir folgende zwei Regeln:
(1) Wenn eine Funktion nur vom Betrag \(x=\|\vec x\|\) des Vektors abhängt, was hier der Fall ist, kann man den Gradienten sehr schnell bestimmen:$$\operatorname{grad}\varphi(x)=\varphi'(x)\cdot\vec x^0$$(2) Die Produktregel für die Divergenz lautet:$$\operatorname{div}(\varphi(\vec x)\cdot\vec A(\vec x))=\varphi(\vec x)\cdot\operatorname{div}\vec A(\vec x)+\vec A(\vec x)\cdot\operatorname{grad}\varphi(\vec x)$$
Damit ist die Rechnung nun schnell durchgeführt:$$\triangle F(\vec x;t)=\operatorname{div}\operatorname{grad}F(\vec x;t)\stackrel{(1)}{=}\operatorname{div}\left(t^{-\frac{n}{2}}\cdot\exp\left(-\frac{x^2}{4t}\right)\cdot\left(-\frac{2x}{4t}\right)\cdot\vec x^0\right)$$$$\phantom{\triangle F(\vec x;t)}=-\frac{t^{-\frac{n}{2}-1}}{2}\operatorname{div}\left(\exp\left(-\frac{x^2}{4t}\right)\cdot\vec x\right)$$$$\phantom{\triangle F(\vec x;t)}\stackrel{(2)}{=}-\frac{t^{-\frac{n}{2}-1}}{2}\left(\exp\left(-\frac{x^2}{4t}\right)\cdot\underbrace{\operatorname{div}(\vec x)}_{=n}+\vec x\cdot\operatorname{grad}\left(\exp\left(-\frac{x^2}{4t}\right)\right)\right)$$$$\phantom{\triangle F(\vec x;t)}\stackrel{(1)}{=}-\frac{t^{-\frac{n}{2}-1}}{2}\left(\exp\left(-\frac{x^2}{4t}\right)\cdot n+\vec x\cdot\left(\exp\left(-\frac{x^2}{4t}\right)\cdot\left(-\frac{2x}{4t}\right)\cdot\vec x^0\right)\right)$$$$\phantom{\triangle F(\vec x;t)}=-\frac{t^{-\frac{n}{2}-1}}{2}\left(\exp\left(-\frac{x^2}{4t}\right)\cdot n+\vec x\cdot\left(-\frac{\vec x}{2t}\exp\left(-\frac{x^2}{4t}\right)\right)\right)$$$$\phantom{\triangle F(\vec x;t)}=-\frac{t^{-\frac{n}{2}-1}}{2}\left(\exp\left(-\frac{x^2}{4t}\right)\cdot n-\frac{\vec x^2}{2t}\exp\left(-\frac{x^2}{4t}\right)\right)$$$$\phantom{\triangle F(\vec x;t)}=-\frac{t^{-\frac{n}{2}-1}}{2}\left(n-\frac{x^2}{2t}\right)\exp\left(-\frac{x^2}{4t}\right)$$
Die partielle Ableitung nach \(t\) ist einfach die Anwendung der Produktregel:$$\frac{\partial F(\vec x;t)}{\partial t}=\frac{\partial}{\partial t}\left(\underbrace{t^{-\frac{n}{2}}}_{=u}\cdot\underbrace{\exp\left(-\frac{x^2}{4t}\right)}_{=v}\right)$$$$\phantom{\frac{\partial F(\vec x;t)}{\partial t}}=\underbrace{-\frac{n}{2}t^{-\frac{n}{2}-1}}_{=u'}\cdot\underbrace{\exp\left(-\frac{x^2}{4t}\right)}_{=v}+\underbrace{t^{-\frac{n}{2}}}_{=u}\cdot\underbrace{\exp\left(-\frac{x^2}{4t}\right)\cdot\frac{x^2}{4t^2}}_{=v'}$$$$\phantom{\frac{\partial F(\vec x;t)}{\partial t}}=-\frac{t^{-\frac{n}{2}-1}}{2}\left(n-\frac{x^2}{2t}\right)\exp\left(-\frac{x^2}{4t}\right)$$
In der Tat sind beide Ausdrücke gleich, sodass die Differentialgleichung erfüllt ist.