Aufgabe :
(B) Aufgabe 4.1: Sei \( (F, \oplus, \odot) \) ein Körper. Zeigen Sie durch vollständige Induktion (nach \( n \) ):
\( (x \oplus y)^{n}=\bigoplus_{k=0}^{n}\left(\begin{array}{l} n \\ k \end{array}\right) \cdot x^{n-k} \odot y^{k}, \quad x, y \in F, n \in \mathbb{N}_{0} . \)
(B) Aufgabe 4.2: Sei \( (F, \oplus, \odot) \) ein Körper.
(a) Zeigen Sie durch vollständige Induktion (nach \( n \) ):
\( \bigoplus_{k=0}^{n} x^{n-k} \odot y^{k}=\frac{y^{n+1} \ominus x^{n+1}}{y \ominus x}, \quad x, y \in F, x \neq y, n \in \mathbb{N}_{0} . \)
(b) Zeigen Sie die geometrische Summenformel:
\( \bigoplus_{k=0}^{n} q^{k}=\frac{1_{F} \ominus q^{n+1}}{1_{F} \ominus q}, \quad q \in F, q \neq 1_{F}, n \in \mathbb{N}_{0} \)