Symmetrie
\(\begin{aligned} & f(-x)\\ =\, & -x\cdot\sin\left(\frac{1}{1+\left(-x\right)^{2}}\right)\\ =\, & -x\cdot\sin\left(\frac{1}{1+x^{2}}\right)\\ =\, & -f(x) \end{aligned}\)
Randverhalten
\(\begin{aligned} & x\to\infty\\ \implies & x^{2}\to\infty\\ \implies & 1+x^{2}\to\infty\\ \implies & \frac{1}{1+x^{2}}\to0\\ \implies & \sin\left(\frac{1}{1+x^{2}}\right)\to0 \end{aligned}\)
Nullstellen
\(\begin{aligned} & & x\cdot\sin\left(\frac{1}{1+x^{2}}\right) & =0\\ & \iff & x & =0\vee\sin\left(\frac{1}{1+x^{2}}\right)=0\\ & \iff & x & =0 \end{aligned}\)