Aloha :)
Das integrationsgebiet \(B\) ist die Punktmenge unterhalb der Wurzelfunktion:
~plot~ sqrt(x) ; 1*(x<=1) ; [[0|1,1|0|1,1]] ~plot~
In der Vorgabe ist diese Punktmenge parametrisiert durch:$$y\in[0;1]\quad\land\quad x\in[y^2;1]$$Zur Integration können wir die Parametrisierung umschreiben:$$x\in[0;1]\quad\land\quad y\in[0;\sqrt x]$$Damit lautet das Integral:
$$I=\iint\limits_By\cos(x^2)\,dx\,dy=\int\limits_{x=0}^1\int\limits_{y=0}^{\sqrt x}y\cos(x^2)\,dy\,dx=\int\limits_0^1\left[\frac{y^2}2\cos(x^2)\right]_{y=0}^{\sqrt x}dx$$$$\phantom{I}=\int\limits_0^1\frac{x}{2}\cos(x^2)dx=\frac{1}{4}\int\limits_0^1\cos(x^2)\,2x\,dx=\frac{1}{4}\int\limits_0^1\cos(x^2)\,d(x^2)=\frac{1}{4}\left[\sin(x^2)\right]_0^1$$$$\phantom{I}=\frac{\sin(1)}{4}$$