die Antwort kommt etwas spät, aber dafür kannst du dir das nochmal anschauen und nachfolgende Fragesteller, die die gleiche Frage haben, können sich auf dieser Weise sofort Tipps holen. Fangen wir an.
Die Behauptung ist:
Für eine symmetrische Matrix \(A \in \mathbb{R}^{n \times n}\) sind dessen Eigenvektoren zu verschiedenen Eigenwerte orthogonal.
Vorüberlegung:
(1) Wir betrachten hier symmetrischen Matrizen. Diese haben die besondere Eigenschaft, dass sie identisch mit ihrer Transponierten sind: \(A = A^T\).
(2) Es ist \(0 \neq v_1 \in \mathbb{R}^n\) ein Eigenvektor zum Eigenwert \(\lambda_1\) von \(A\), wenn die Gleichung \(Av_1 = \lambda_1 v_1\) erfüllt ist.
(3) Wir nennen \(v_1, \ v_2 \in \mathbb{R}^n\) orthogonal, wenn dessen Skalarprodukt gleich Null ist: \(v_1 \cdot v_2 = 0\)
(4) Das Skalarprodukt können wir auch schreiben als \(v_1 \cdot v_2 = v_1^Tv_2\), denn:
Sei o.E.d.A. \(n = 3\). \(\begin{pmatrix} x_1 \\ y_1 \\ z_1\end{pmatrix}^T\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} x_1 & y_1 & z_1\end{pmatrix}\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \stackrel{Matrix \ mult.}{=} x_1x_2 + y_1y_2 + z_1z_2\)
Nun kommen wir zum Beweis. Ich werde hier einige Zwischenschritte weglassen, weil du selber ja auch noch etwas machen sollst.
Beweis (Vorlage):
\(\lambda_1v_1^Tv_2 \stackrel{(*)}{=} (Av_1)^Tv_2 = v_1^TA^Tv_2 = ... = \lambda_2v_1^Tv_2 \iff (\lambda_1 - \lambda_2)v_1^Tv_2 = 0\)
\((*)\) Überlege dir, warum \(\lambda_1v_1^T = (Av_1)^T\) gilt. Solltest du nicht sofort drauf kommen, nimm dir eine \(3 \times 3\) Matrix und einen dreidimensionalen Vektor und führe die Multiplikationen durch. Schau dann, was auf der linken und auf der rechten Seite für Vektoren stehen. Wie sehen die aus?
Aus \((\lambda_1 - \lambda_2)v_1^Tv_2 = 0\) erhalten wir die Behauptung, warum? Warum kann nicht \(\lambda_1 - \lambda_2 = 0\) gelten?