f(x)=\( \frac{−x^2+11x−18}{x^2} \)
Nullstellen:
−x^2+11x−18=0|*(-1)
x^2-11x=-18
(x-\( \frac{11}{2} \) )^2=-18+\( \frac{121}{4} \)=\( \frac{49}{4} \)|\( \sqrt{} \)
1.)x-\( \frac{11}{2} \)=\( \frac{7}{2} \)
x₁=9
2.)x-\( \frac{11}{2} \)=-\( \frac{7}{2} \)
x₂=2
\( A=\int \limits_{2}^{9} \frac{-x^{2}+11 x-18}{x^{2}} \cdot d x=\int \limits_{2}^{9}\left(-1+\frac{11}{x}-18 \cdot x^{-2}\right) \cdot d x=\left[-x+11 \ln (x)+\frac{18}{x}\right]_{2}^{9}= \)
\( =\left[-9+11 \ln (9)+\frac{18}{9}\right]-\left[-2+11 \ln (2)+\frac{18}{2}\right] \approx 2,545 F E \)