Aloha :)
Im ersten Fall fällt das Objekt aus der Höhe \(s\) in der Zeit \(t_1\) nach unten:$$s=\frac12gt_1^2$$Im zweiten Fall kommt der Boden mit der Beschleunigung \(a\) entgegen:$$s=\frac12(g-a)t_2^2$$Zur Bestimmung von \(a\) dividieren wir:
$$1=\frac ss=\frac{\frac12(g-a)t_2^2}{\frac12gt_1^2}=\frac{g-a}{g}\cdot\frac{t_2^2}{t_1^2}\implies g\cdot\frac{t_1^2}{t_2^2}=g-a\implies a=\left(1-\left(\frac{t_1}{t_2}\right)^2\right)g$$Wir setzen \(\frac{t_2}{t_1}=0,6=\frac35\) bzw. den Kehrwert \(\frac{t_1}{t_2}=\frac53\) ein:
$$a=\left(1-\left(\frac{5}{3}\right)^2\right)g=-\frac{16}{9}g=-\frac{16}{9}\cdot9,81\,\frac{\mathrm m}{\mathrm s^2}=-17,44\,\frac{\mathrm m}{\mathrm s^2}$$Das negative Vorzeichen von \(a\) kommt daher, dass \(a\) und \(g\) entegengesetzt gerichtet sind.