0 Daumen
162 Aufrufe

Aufgabe:

$$Gegeben \;seien\; m, n ∈ N\; mit\; m < n. \\Zeige \;durch\; direkte\; Rechnung,\; dass\; für\; k = 2, 3, . . . , n\\ \\ \\ \frac{1}{m^{k}}\begin{pmatrix} m\\k \end{pmatrix}\lt \frac{1}{n^{k}}\begin{pmatrix} n\\k \end{pmatrix}\leq \frac{1}{k!} \leq \frac{1}{2^{k-1}} \qquad gilt.$$


Problem/Ansatz: Ich habe überlegt die Binomialkoeffizienten in Terme umzuschreiben damit sich was kürzt. Also

$$\begin{pmatrix} m\\k \end{pmatrix} = \frac{m(m-1)(m-2)(m-3)...}{k(k-1)(k-2)(k-3)...}$$

Aber ich sehe nicht wie ich das besser hinschreiben könnte. Ich finde leider keinen anderen Ansatz. Wäre sehr dankbar für jegliche Hinweise. Was noch zu beachten ist: 0 ist kein Element von N hier.

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community