Wir partitionieren das Interval \( [0,4] \) in \( n \) gleich grosse Teilintervalle,jedes also mit Länge
\( \frac{4-0}{n}=\frac{4}{n} \Longrightarrow P=\left\{0,0+\frac{4}{n}, 0+2 \cdot \frac{4}{n}, \ldots, 0+n \cdot \frac{4}{n}\right\} \)
Damit ergibt sich die Summe
\( \begin{aligned} O_{n} &=\sum \limits_{i=1}^{n} \sup _{x \in\left[x_{i}, x_{i-1}\right]} f(x)\left(x_{i}-x_{i-1}\right)=\sum \limits_{i=1}^{n} \sup _{x \in\left[\frac{4 i}{n}, \frac{4(i-1)}{n}\right]} 2 x^{2}\left(\frac{4 i}{n}-\frac{4(i-1)}{n}\right) \\ &=\sum \limits_{i=1}^{n} 2\left(\frac{4 i}{n}\right)^{2} \frac{4}{n}=\frac{128}{n^{3}} \sum \limits_{i=1}^{n} i^{2}=\frac{64}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{3} \end{aligned} \)
Es ist klar zu sehen, dass der Limes gegen 128/3 strebt.
Das sollte dir die Idee geben, wie du b) lösen kannst.