Definiert waren die wohl so \( \left(\begin{array}{l}n \\k\end{array}\right) =\frac{n!}{k!\cdot(n-k)!} \)
==> \(\left(\begin{array}{c}n \\k-1\end{array}\right)+\left(\begin{array}{l}n \\k\end{array}\right)=\frac{n!}{(k-1)!\cdot(n-k+1)!}+\frac{n!}{k!\cdot(n-k)!}\)
\(=\frac{k\cdot n!}{k!\cdot(n-k+1)!}+\frac{(n-k+1)\cdot n!}{k!\cdot(n-k+1)!}\)
\(=\frac{k\cdot n! + (n-k+1)\cdot n!}{k!\cdot(n-k+1)!}\)
\(=\frac{ (n+1)\cdot n!}{k!\cdot(n-k+1)!}\)
\(=\frac{ (n+1)!}{k!\cdot(n+1-k)!}\)
\(=\left(\begin{array}{c}n+1 \\k\end{array}\right) \quad \)