Hi Lilli (und danke Lu fürs übersetzen ;))
Fasse gleiche Potenzen zusammen:
3x4+5y2-1/2x3-3y2+2x4 = 5x^4 + 2y^2 - 1/2x^3
2x2 y3(2x2y+x3 y4)-3x4 y(y3+3xy6) = 4x^4 y^4 + 2x^5 y^4 - 3x^4 y^4 - 9x^5 y^7
= x^4 y^4 + 2x^5 y^4 - 9x^5 y^7
a3*a4*a6 = a^{3+4+6} = a^{13}
3x5*4y3*5y2 = 60*x^5*y^{3+2} = 60*x^5*y^5
(4x2 y3) : (3x4 y5) = 4/3*x^{2-4}*y^{3-5} = 4/3*x^{-2}y^{-2} = 4/(3x^2 y^2)
3*y3*z4 : 16*v-4*x5 = (3y^3 z^4)/(8x^{-2}v^6) * (9y^6 z^{-3})/(16v^{-4}x^5)
8*x-2*v6 9*y6*z-3
= 27/128 * y^{3+6}*z4+(-3)*x^{2-5}*v-6-(-4) = 27/128*y^9*z*x^{-3}*v^{-2}
Grüße