Aufgabe:
a) \( f:[0,1] \cup\{2\} \rightarrow \mathbb{R}, f(x)= \) \( \left\{\begin{array}{ll}x & \text { falls } 0 \leq x \leq 1 \\ 0 & \text { falls } x=2\end{array}\right. \)
b.) \( g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\lim \limits_{n \rightarrow \infty} \frac{1}{1+x^{2 n}} \)
c.) \( h: \mathbb{R} \rightarrow \mathbb{R}, h(x)=\left\{\begin{array}{ll}x & \text { falls } x \in \mathbb{Q} \\ 0 & \text { falls } x \notin \mathbb{Q}\end{array}\right. \)