Da du bereits die absolute Konvergenz der Doppelreihe gezeigt hast,
kannst du die Reihenfolge der Summation frei bestimmen ohne
den Wert der Reihe zu verändern. Es bietet sich an:$$\sum_{m,n\geq 2}(-1)^{m+n}\frac{1}{m^n}=\sum_{m=2}^{\infty}(-1)^m\sum_{n=2}^{\infty}(-1/m)^n$$$$=\sum_{m=2}^{\infty}(-1)^m(\frac{1}{m}-\frac{1}{m+1})= ... $$