Der Zeitraum wird in \(\frac{3\mathrm{h}}{10\mathrm{min}} = 18\) Abschnitte aufgeteilt.
Das ergibt für jeden der \(n=50\) Anrufe eine Wahrscheinlickeit von \(p=\frac{1}{18}\), in einem bestimmten Abschnitt zu fallen.
Ein Kunde landet in der Warteschleife, wenn mehr als \(k = 5\) Anrufe in einem Abschnitt eintreffen.
Kumulierte Binomiverteilung. Das ganze nennt sich Auslastungsmodell.