Aloha :)
Willkommen in der Mathelounge... \o/
Wir benötigen von der Funktion$$f(x)=x^3-3x^2+2x$$den Wendepunkt. Also brauchen wir die Nullstellen der 2-ten Ableitung:$$f'(x)=3x^2-6x+2$$$$f''(x)=6x-6$$$$f'''(x)=6$$Die Nullstelle der 2-ten Ableitung ist offensichtlich \(x=1\). Da die dritte Ableitung \(\ne0\) ist, liegt dort tatsächlich eine Wendepunkt vor. Zusammen mit \(f(1)=0\) ist der Wendepunkt also \(\boxed{W(1|0)}\).
Die Wendetangente berührt die Funktion als bei \(x=1\), daher lautet ihre Gleichung:$$t_w(x)=f(1)+f'(1)\cdot(x-1)=0+(-1)\cdot(x-1)\implies \boxed{t_w(x)=-x+1}$$Die Wendetangente trifft die \(y\)-Achse also mit der Steigung \(-1\), sodass der Schnittwinkel \(-45^\circ\) beträgt.
Die Wendenormale steht senkrecht auf der Wendetangente, hat also die Steigung \((+1)\), und geht ebenfalls durch den Wendepunkt \(W(1|0)\). Sie hat daher die Geradengleichung:$$\boxed{t_n(x)=x-1}$$
Bildlich sieht die ganze Situatuion also wie folgt aus:
~plot~ x^3-3x^2+2x ; -x+1 ; x-1 ; {1|0} ; [[-1|3|-1,3|1,3]] ~plot~
Das beschriebene "Wendedreieck" hat die Fläche \(\frac12\cdot2\cdot1=1\).