Wie schon erwähnt bringst du die Matrix mit dem Gaußalgorithmus auf Stufennormalform:
$$ \left( \begin{array} { l l l l l } { 1 } & { 2 } & { 1 } & { 2 } & { 1 } & { 2 } \\ { 2 } & { 5 } & { 4 } & { 5 } & { 4 } & { 5 } \\ { 1 } & { 4 } & { 6 } & { 6 } & { 6 } & { 6 } \\ { 2 } & { 5 } & { 6 } & 9 & { 7 } & { 11 } \end{array} \right) \sim \left( \begin{array} { l l l l l l } { 1 } & { 2 } & { 1 } & { 2 } & { 1 } & { 2 } \\ { 0 } & { 1 } & { 2 } & { 1 } & { 2 } & { 1 } \\ { 0 } & { 2 } & { 5 } & { 4 } & { 5 } & { 4 } \\ { 0 } & { 1 } & { 4 } & { 5 } & { 5 } & 7 \end{array} \right) \sim \left( \begin{array} { c c c c c } { 1 } & { 2 } & { 1 } & { 2 } & { 1 } & { 2 } \\ { 0 } & { 1 } & { 2 } & { 1 } & { 2 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 2 } & { 1 } & { 2 } \\ { 0 } & { 0 } & { 2 } & { 4 } & { 3 } & { 6 } \end{array} \right) \sim \left( \begin{array} { l l l l l } { 1 } & { 2 } & { 1 } & { 2 } & { 1 } & { 2 } \\ { 0 } & { 1 } & { 2 } & { 1 } & { 2 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 2 } & { 1 } & { 2 } \\ { 0 } & { 0 } & { 0 } & 0 & { 2 } & { 4 } \end{array} \right) \sim \left( \begin{array} { l l l l l l } { 1 } & { 2 } & { 1 } & { 2 } & { 1 } & { 2 } \\ { 0 } & { 1 } & { 2 } & { 1 } & { 2 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 2 } & { 1 } & { 2 } \\ { 0 } & { 0 } & { 0 } & 0 & { 1 } & { 2 } \end{array} \right) \sim \left( \begin{array} { c c c c c } { 1 } & { 0 } & { 0 } & { 6 } & { 0 } & { 6 } \\ { 0 } & { 1 } & { 0 } & { - 3 } & { 0 } & { - 3 } \\ { 0 } & { 0 } & { 1 } & { 2 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 1 } & { 2 } \end{array} \right)$$
Damit erkennt man nun zunächst den Rang der Matrix: er entspricht der Anzahl der Stufen in der Stufenform, also 4.
Die Basis des Kerns erhält man, wenn man die Matrix so mit Nullzeilen auffüllt, dass die Einsen alle auf der Diagonale stehen. Die Spalten, in denen nun Nullen auf der Diagonalen stehen bilden die Basis des Kerns, wenn man die 0 noch mti einer -1 ersetzt:
$$ \left( \begin{array} { c c c c c c } { 1 } & { 0 } & { 0 } & { 6 } & { 0 } & { 6 } \\ { 0 } & { 1 } & { 0 } & { - 3 } & { 0 } & { - 3 } \\ { 0 } & { 0 } & { 1 } & { 2 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 1 } & { 2 } \end{array} \right) \rightarrow \left( \begin{array} { c c c c c } { 1 } & { 0 } & { 0 } & { 6 } & { 0 } & { 6 } \\ { 0 } & { 1 } & { 0 } & { - 3 } & { 0 } & { - 3 } \\ { 0 } & { 0 } & { 1 } & { 2 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 1 } & { 2 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \end{array} \right) → \left( \begin{array} { c c c c c c } { 1 } & { 0 } & { 0 } & { 6 } & { 0 } & { 6 } \\ { 0 } & { 1 } & { 0 } & { - 3 } & { 0 } & { - 3 } \\ { 0 } & { 0 } & { 1 } & { 2 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 1 } & { 2 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } \end{array} \right) $$
$$ \text{Basis: } B = \left\{ \begin{pmatrix} 6\\-3\\2\\-1\\0\\0 \end{pmatrix}, \begin{pmatrix} 6\\-3\\0\\0\\2\\-1 \end{pmatrix} \right\}$$