Aloha :)
Die Determinante aus den 3 Vektoren gibt das von ihnen aufgespannte Volumen an. Ist die Determinante \(=0\), spannen sie kein Volumen auf und damit auch kein Rechtssystem und kein Linkssystem. Ist die Determinante \(<0\), bilden die drei Vektoren ein Linkssystem, es gilt dann die Linke-Hand-Regel. Ist die Determinante \(>0\), bilden die Vektoren ein Rechtssystem, es gilt dann die Rechte-Hand-Regel.
Wir berechenn also die Determinante aus den 3 Vektoren:$$\left|\begin{array}{rrr}1 & -d & 1\\d & 2 & 0\\3 & 0 & 1\end{array}\right|\stackrel{Z_1-=Z_3}{=}\left|\begin{array}{rrr}-2 & -d & 0\\d & 2 & 0\\3 & 0 & 1\end{array}\right|=-4+d^2\stackrel!>0\implies d^2>4$$
Die drei Vektoren bilden also ein Rechtssystem, für \(d>2\) oder \(d<-2\).