Aloha :)
$$(a+b)^n=\underbrace{(a+b)\cdot(a+b)\cdot(a+b)\cdots(a+b)}_{n\text{ Faktoren}}$$
Beim Ausmultiplizieren mittels des Distributivgesetzes wird aus jeder Klammer entweder ein \(a\) oder ein \(b\) genommen. So erhalten wir in jedem Summanden genau \(n\) Faktoren, die miteinader multipliziert werden. Dabei treten folgende Produkte auf:$$a^n\;,\;a^{n-1}b\;,\;a^{n-2}b^2\;,\;a^{n-3}b^3\;,\;\ldots\;,\;a^2b^{n-2}\;,\;ab^{n-1}\;,\;b^n$$
Mittels des Binomialkoeffizienten können wir bestimmen, wie oft jedes dieser Produkte auftaucht. \(a^n\) erhalten wir nur, wenn wir aus jeder Klammer ein \(a\) auswählen. Dafür gibt es \(\binom{n}{0}=1\) Möglichkeit. \(a^{n-1}b\) erhalten wir, wenn wir aus genau einer der \(n\) Klammern ein \(b\) auswählen und aus allen anderen Klammern ein \(a\). Dafür gibt es \(\binom{n}{1}=n\) Möglichkeiten. \(a^{n-2}b\) erhalten wir, wenn wir aus genau zwei der \(n\) Klammern ein \(b\) auswählen und aus allen anderen Klammern ein \(a\). Dafür gibt es \(\binom{n}{2}\) Möglichkeiten... Diese Feststellung fassen wir im binomischen Lehrsatz zusammen:$$(a+b)^n=\sum\limits_{k=0}^n\binom{n}{k}a^{n-k}b^k$$